A Local Stability Supported Parallel Distributed Constraint Optimization Algorithm

نویسندگان

  • Duan Peibo
  • Zhang Changsheng
  • Zhang Bin
چکیده

This paper presents a new distributed constraint optimization algorithm called LSPA, which can be used to solve large scale distributed constraint optimization problem (DCOP). Different from the access of local information in the existing algorithms, a new criterion called local stability is defined and used to evaluate which is the next agent whose value needs to be changed. The propose of local stability opens a new research direction of refining initial solution by finding key agents which can seriously effect global solution once they modify assignments. In addition, the construction of initial solution could be received more quickly without repeated assignment and conflict. In order to execute parallel search, LSPA finds final solution by constantly computing local stability of compatible agents. Experimental evaluation shows that LSPA outperforms some of the state-of-the-art incomplete distributed constraint optimization algorithms, guaranteeing better solutions received within ideal time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Allocation of Distributed Generation in Microgrid by Considering Load Modeling

Recent increment in carbon emission due to the dependency on fossil fuels in power generation sector is a critical issue in the last decade. The motivation to Distributed Generation (DG) in order to catch low carbon networks is rising. This research seeks to experience DG existence in local energy servicing in microgrid structure. Optimal sizing and placement of DG units is followed by this pap...

متن کامل

Optimum Local Decision Rules in a Distributed Detection System with Dependent Observations

The theory of distributed detection is receiving a lot of attention. A common assumption used in previous studies is the conditional independence of the observations. In this paper, the optimization of local decision rules for distributed detection networks with correlated observations is considered. We focus on presenting the detection theory for parallel distributed detection networks with fi...

متن کامل

Optimum Local Decision Rules in a Distributed Detection System with Dependent Observations

The theory of distributed detection is receiving a lot of attention. A common assumption used in previous studies is the conditional independence of the observations. In this paper, the optimization of local decision rules for distributed detection networks with correlated observations is considered. We focus on presenting the detection theory for parallel distributed detection networks with fi...

متن کامل

Optimal Placement and Sizing of DGs and Shunt Capacitor Banks Simultaneously in Distribution Networks using Particle Swarm Optimization Algorithm Based on Adaptive Learning Strategy

Abstract: Optimization of DG and capacitors is a nonlinear objective optimization problem with equal and unequal constraints, and the efficiency of meta-heuristic methods for solving optimization problems has been proven to any degree of complex it. As the population grows and then electricity consumption increases, the need for generation increases, which further reduces voltage, increases los...

متن کامل

Solving a New Multi-objective Unrelated Parallel Machines Scheduling Problem by Hybrid Teaching-learning Based Optimization

This paper considers a scheduling problem of a set of independent jobs on unrelated parallel machines (UPMs) that minimizesthe maximum completion time (i.e., makespan or ), maximum earliness ( ), and maximum tardiness ( ) simultaneously. Jobs have non-identical due dates, sequence-dependent setup times and machine-dependentprocessing times. A multi-objective mixed-integer linear programmi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014